A NOVEL PHOTOSUBSTITUTION OF DICYANOBENZENES BY ALLYLIC AND BENZYLIC SILANES

Kazuhiko MIZUNO, Munehiro IKEDA, and Yoshio OTSUJI^{*} Department of Applied Chemistry, College of Engineering, University of Osaka Prefecture, Sakai, Osaka 591, Japan

Abstract: The photosubstitution of o- and p-dicyanobenzenes by allylic and benzylic silanes in acetonitrile occurred efficiently, giving the corresponding mono-allylated and benzylated cyanobenzenes.

A great deal of attention has been focussed on the application of allylic silanes in organic synthesis.¹⁻⁴ However, little is known about the reactivity of the cation radicals of allylic and benzylic silanes, which can be generated via photoinduced electron transfer.⁵ We now report a novel photosubstitution reaction of dicyanobenzenes by allylic and benzylic silanes in a neutral homogeneous solution.⁶

Irradiation of an acetonitrile solution of p-dicyanobenzene (p-DCB, 1 mmol) and allyltrimethylsilane (1a, 5 mmol) with a high-pressure Hg arc through a Pyrex filter gave 4-allyl-1-cyanobenzene (2a) in 66% yield, accompanying formation of cyanotrimethylsilane.⁷ Similar irradiation of mixtures of p-DCB or o-dicyanobenzene (o-DCB) and 1a-b afforded the corresponding mono-allylated cyanobenzenes in moderate yields. Such a photosubstitution reaction did not occur in the photoreactions of m-dicyanobenzene (m-DCB) with 1a-b.

In the photoreaction of p-DCB with 3-methyl-2-butenyltrimethylsilane (1c) the photosubstitution occurred at both α - and γ -positions of the allylic moiety, giving 4c and 5c in a 2:3 ratio in 91% yield. The photoreactions of p-DCB with 1d-f gave the corresponding α - and γ -substituted cyanobenzenes in good yields. The results are summarized in Table 1.

Entry	Aromatic nitrile	Allylic silane	Product(s)	Yield /% ^b (ratio)	conversion /8
1		Me ₃ Si	NC-O-2a	66	100
2	p-DCB			80	74
3	\bigotimes_{n-DCB}^{CN}	1a	\bigcirc	67	70
4	o-DCB	1 b	() CN 3.5	44	52
5	p-DCB	Me ₃ Si		91 (2:3)	100
6	p-DCB	Me ₃ Si N		80 (2:3)	100
7	p-DCB	Me ₃ Si	$\begin{array}{ccc} 4d & 5d \\ 4d & 5d \\ 6d & 6d \end{array}$	80 (2:3)	100
8	p-DCB	SiMe ₃		54 (1:1)	75
9	p-DCB	Me ₃ SiCH ₂ Ph [1g	$\bigcup_{CN 2g}^{CH_2Ph} (PhCH_2 + 2) \bigcup_{Z}^{CH_2Ph} (PhCH_2 +$	81 (7:2:4)	57
10	o-DCB	1g NC		7 44 (1:2:4)	100

Table 1. Photosubstitution of Dicyanobenzenes by Allylic and Benzylic Silanes^a

^aAll the reactions were carried out in CH_3CN by irradiating through a Pyrex filter under N₂ for 30-40h. ^bIsolated yield based on p-DCB or o-DCB consumed.

Irradiation of a mixture of p-DCB and benzyltrimethylsilane (1g) in acetonitrile afforded a mixture of 1-benzyl-4-cyanobenzene (2g), 1,2-diphenylethane (6), and toluene (7). In deuterated acetonitrile, monodeuterated toluene was produced along with other products.

The photoproducts were isolated by column chromatography on silica gel or preparative GLC, and the structures of the products were assigned from their spectral (1 H NMR, IR, UV, mass) properties and elemental analyses.

The fluorescence of o-, m-, and p-DCB was efficiently quenched by allylic and benzylic silanes in acetonitrile (Table 2). The photosubstitution reactions occurred efficiently in polar solvents such as acetonitrile, propionitrile and methanol, but not in less polar solvents such as benzene and diethyl ether. From the Rehm-Weller equation,⁹ negative ΔG values were estimated for the one-electron transfer from 1a, 1c, and 1g to the excited singlet p-DCB (¹p-DCB^{*}). The photoinduced electron transfer from allylic and benzylic silanes to the excited singlet dicyanobenzenes is conceivably involved as a key step of these photosubstitution reactions (Scheme 1).

R, R' = H or alkyl

Scheme 1.

Table 2. Rate Constants (kq) for the Fluorescence Quenching of o-, m-, and p-DCB, Oxidation Potentials $(E_{1/2}^{OX})$ of Allylic and Benzylic Silanes, and Free Energy Changes (ΔG)

DCB (E ^{red} /V)	Quencher	E ^{OX} /V 1/2 (Ag/Ag ⁺)	kqτ /mol ⁻¹ dm ³	kg x 10 ^{-10 a} /mol ⁻¹ dm ³ s ⁻¹	A) ∆G /kJ ^{b)}
p-DCB	1a	1.58	99.4	1.1	-80.7
(-1.92V)	1 <u>b</u>	1.28	138.3	1.6	-109.6
	1c	0.92	157.1	1.8	-144.3
	1g	1.22	266.7	3.0	-115.4
m-DCB (-1 92V)	1a	1.58	87.4	0.63	-85.7
o-DCB (-1.86V)	1a ≁	1.58	48.8	0.86	-86.5

a) Ref. 8 b) $\Delta G = 96.49(E_{1/2}^{\text{ox}} - E_{1/2}^{\text{red}} - \frac{e_0^2}{\epsilon_a}) - \text{Es}$ (kJ) : $E_{1/2}^{\text{red}}$; reduction potentials of DCB, $\frac{e_0^2}{\epsilon_a}$; Coulombic term, Es; excited singlet energies of DCB : See ref. 9

Acknowledgment: This work was supported by the Asahi Glass Foundation for Contribution to Industrial Technology and a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan (No. 59750678). We also thank Toshiba Silicone Co., Ltd., for gift of chlorotrimethylsilane.

References

- 1. T. H. Chan and I. Fleming, Synthesis, 761 (1979).
- E. W. Colvin, "Silicon in organic synthesis", Butterworths, London (1981), pp. 97-124.
- 3. M. Ochiai and E. Fujita, Yuki Gosei Kagaku Kyokai Shi, 40, 508 (1982).
- W. P. Weber, "Silicon Reagents for Organic Synthesis", Springer-Verlag Berlin (1983), pp. 173-205.
- 5. (a) K. Ohga and P. S. Mariano, <u>J. Am. Chem. Soc.</u>, <u>104</u>, 617 (1982); (b) T. T. Harding, J. W. Ullrich, F. T. Chiu, S. Chen, and P. S. Mariano, <u>J. Org.</u> <u>Chem.</u>, <u>47</u>, 3362 (1982); (c) S. Chen, J. W. Ullrich, and P. S. Mariano, <u>J. Am.</u> <u>Chem. Soc.</u>, <u>105</u>, 6160 (1983); (d) K. Ohga, U. C. Yoon, and P. S. Mariano, <u>J. Am.</u> <u>Org. Chem.</u>, <u>49</u>, 213 (1984); (e) J. W. Ullrich, F. T. Chiu, T. T. Harding, and P. S. Mariano, <u>J. Org. Chem.</u>, <u>49</u>, 220 (1984); (f) F. T. Chiu, J. W. Ullrich, and P. S. Mariano, <u>J. Org. Chem.</u>, <u>49</u>, 228 (1984).
- Ochiai and Fujita reported an aromatic substitution by allylic silanes in the presence of Tl(III): M. Ochiai, M. Arimoto, and E. Fujita, <u>Tetrahedron Lett</u>., 491 (1981).
- 7. The formation of cyanotrimethylsilane was confirmed by ¹H NMR, GLC, and GC mass analyses of the reaction mixture.
- 8. R. M. Borg, D. R. Arnold, and T. S. Cameron, Can. J. Chem., 62, 1785 (1984).
- 9. D. Rehm and A. Weller, <u>Isr. J. Chem.</u>, <u>8</u>, 259 (1970). (Received in Japan 30 October 1984)